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Abstract

In this paper, we present Dexbotic, an open-source
Vision-Language-Action (VLA) model toolbox based on Py-
Torch. It aims to provide a one-stop VLA research service
for professionals in the field of embodied intelligence. It
offers a codebase that supports multiple mainstream VLA
policies simultaneously, allowing users to reproduce var-
ious VLA methods with just a single environment setup.
The toolbox is experiment-centric, where the users can
quickly develop new VLA experiments by simply modify-
ing the Exp script. Moreover, we provide much stronger
pretrained models to achieve great performance improve-
ments for state-of-the-art VLA policies. Dexbotic will con-
tinuously update to include more of the latest pre-trained
foundation models and cutting-edge VLA models in the in-
dustry.

1. Introduction
Recently, significant progress has been made in the field

of embodied intelligence with the development of Vision-
Language-Action (VLA) models [2, 4, 15, 26, 27, 30]. How-
ever, research in this area is fragmented across various insti-
tutions, each using different deep learning frameworks and
model architectures. This diversity creates challenges for
users when comparing policies, as they must configure mul-
tiple experimental environments and data formats, making
the VLA development process cumbersome. Additionally,
ensuring that each policy being compared is optimized to its
fullest potential is difficult, leading to unfair comparisons.
Furthermore, VLA models have evolved alongside Vision-
Language Models (VLMs). However, many existing VLA
models [14, 16] are built on outdated VLMs [29], making
most users fail to benefit from the latest advanced VLMs.

To address these challenges, we release the so-called
Dexbotic Toolbox for the Embodied AI community to push
VLA research forward. Reviewing the toolbox develop-
ment in AI 1.0 Era [7,32], the first step is to unify the model
architecture. This process involves standardizing the struc-
tures and designs of models, which facilitated easier shar-

ing, comparison, and improvement of algorithms across the
research community. For example, mmdetection [7] disas-
sembles the object detectors into backbone, neck and head.
Similarly, existing VLA policies are uniformly divided into
two parts in Dexbotic: vision-language model (VLM) and
action expert (AE). The VLM part mainly includes a vi-
sion encoder, projector and large language model (LLM).
It takes the observation and task prompt as inputs and pro-
duces the multi-modal tokens, which can be used to gener-
ate the discrete actions [4, 15] or serves as the input of AE.
The architecture of AE can be diffusion transformer [16],
Multi-layer Perception (MLP) [14] or Mixture-of-Experts
(MoE) [2, 3] coupled with LLM.

Based on the unified model architecture above, Dexbotic
further provides stronger pretrained models for some main-
stream VLA policies, compared to the original open-source
ones. Many existing VLA policies are built upon some
outdated open-source VLMs or LLMs. For example,
OpenVLA [15] and its follow-ups like CogACT [16] and
OFT [14], are all constructed based on Llama2 [29], whose
representation is much inferior than those latest LLMs, like
Qwen3 [33]. In Dexbotic, we introduce the DexboticVLMs,
which integrates the open-source vision encoders with latest
LLMs. Based on DexboticVLMs, we first provide discrete
pretrained model for general VLM-based discrete policies.
Users can utilize the discrete pretrained model for initializa-
tion of VLM part. For specific continuous-representation
VLA policies, we further provide the detailed implemen-
tation for various action experts. Both the single-arm and
hybrid-arm continuous pretrained models are provided to
initialize the whole models.

To facilitate the development of VLA experiments,
Dexbotic introduces an experiment-centric development
framework. Different from those codebases that build upon
the yaml files for configuration [32], Dexbotic configurates
the parameters by the Exp scripts based on the provided
base_exp script. User can simply modify these parameters
that differentiates from the base_exp script without affect-
ing the whole configuration. Users can easily meet various
needs such as modifying configurations, changing models,
or adding tasks by simply altering the Exp script. More-
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Figure 1. The overall architecture of Dexbotic. It introduces the Dexdata format to unify different embodiments. In Model Layer, Dexbotic
integrates the open-source vision encoder, LLM and action expert through a unified modular VLA framework. Based on the provided
DexboticVLMs, users can develop existing VLA policies and custom policies. Based on the developed policies, we further propose the
Experiment Layer for fast development. Both the training pipeline and inference service are supported on some cloud service and customer
GPUs.

over, Dexbotic supports the VLA training and inference on
some cloud service like Alibaba Cloud as well as customer
GPUs to satisfy the demand of different users. Dexbotic in-
troduces the Dexdata format to support the training and de-
ployment on multiple robots. The Dexdata format can save
the storage for model training, compared to the LeRobot [6]
and RLDS [25] format.

2. Main Features
2.1. Unified Modular VLA Framework

Dexbotic centers around VLA models and is compati-
ble with open-source interfaces of mainstream large lan-
guage models (LLM). It integrates embodied manipulation
and navigation, supporting multiple leading embodied ma-
nipulation and navigation policies, while also incorporating
interfaces for future whole-body control.

2.2. Powerful Pre-trained Foundation Models

For mainstream VLA policies such as π0 [2] and Co-
gACT [16], Dexbotic open-sources several more powerful
pre-trained foundation models. These models bring signifi-
cant performance improvements across various mainstream
simulators, like SimplerEnv [17] and CALVIN [21], as well
as the real-world robotic tasks.

2.3. Experiment-Centric Development Framework

The experimental framework of Dexbotic adopts a "lay-
ered configuration + factory registration + entry dispatch"
approach. Users can easily meet various needs such as mod-
ifying configurations, changing models, or adding tasks by

simply altering the experimental Exp script. This design
aligns with the Open-Closed Principle, allowing for flexi-
bility and extensibility while maintaining stability.

2.4. Cloud and Local Training Capabilities

Dexbotic fully addresses the training needs of users from
different universities and enterprises. It supports large-scale
cloud-based training platforms such as Alibaba Cloud and
Volcano Engine. Additionally, it accommodates local train-
ing with consumer-grade GPUs, such as RTX 4090 cards.

2.5. Diverse Robot Training and Deployment

For various mainstream robots, such as UR5, Franka and
ALOHA, Dexbotic offers a unified data format for training.
It also provides open-source, general-purpose deployment
scripts, allowing users to customize their deployments. In
the future, Dexbotic will continue to support additional
mainstream robotic platforms.

3. Supported VLA Policies
Unified Policy Representation: The representation of dif-
ferent policies can be unified for both robotic manipulation
and navigation, though their components may have some
differences. Usually, the VLA policies can be simply di-
vided into two parts: VLM and Action Expert.
VLM can be regarded as the backbone of VLA policy. It
is usually pretrained on multimodality data, such as the
image-text pairs for VQA and image caption. It mainly
includes three parts: Vision encoder (e.g., CLIP [24],
SigLIP [34]) for visual token generation. Projector (e.g.,



two-layer MLPs) projects visual tokens into the textual
space. LLM (e.g., Llama 2 [29]) takes as input visual and
textual tokens and produces tokens for text generation.
Action Expert takes the representation from VLM, such
as the multi-modal tokens or cognition token, as input
and produces the action chunking. For example, CogACT
employs Diffusion Transformer while π0 uses the flow
matching. Currently, Dexbotic supports these VLA policies
for robotic manipulation and navigation as follows. More
VLA like π0.5 [3] and VLN policies like NaVid [35] and
NaVILA [9] will be supported in the near future.

• π0 [2] is a well-known flow matching VLA policy and
built upon the PaliGemma [1] and uses the action expert to
generate action chunking.

• OpenVLA-OFT [14] can be regarded as the improved
version of OpenVLA [15] and explores fine-tuning strate-
gies to greatly improve manipulation performance.

• CogACT [16] is also based on the OpenVLA and extracts
the cognition token, together which the noises are input to
the Diffusion Transformer for diffusion modeling.

• MemoryVLA [26] further introduces the concept of
perceptual-cognitive memory, improving the performance
on long-horizon tasks.

• MUVLA [11] is a recently proposed VLA policy based
on map understanding for object navigation and achieves
state-of-the-art performance.

4. Architecture

4.1. Overall Architecture

Fig. 2 shows the overall architecture of Dexbotic tool-
box. It mainly includes three typical layers: Data Layer,
Model Layer and Experiment Layer. In Data Layer
(Sec. 4.2), we define the so-called Dexdata format to unify
different data sources and save the storage. With Dex-
data format data, dexbotic performs the data process to
extract the image, text and state for training. In Model
Layer (Sec. 4.3), we introduce the basic DexboticVLM
as the foundation model to develop more VLA policies.
DexboticVLM can be directly used for discrete VLA train-
ing, like RT-2 [4] and OpenVLA [15]. It can also serve as
the base model of existing VLA policies. For current ver-
sion, we support multiple VLA policies like π0, OpenVLA-
OFT and CogACT. User can directly define their own cus-
tom VLA models. The most important part of dexbotic is
the Experiment Layer (Sec. 4.4). Based on different VLA
models in Model Layer, we introduce various experiment
scripts to support fast development for existing and custom

Dexdata Format Source

Data Process Pipeline

DexboticVLM

Discrete Exp Pi0 Exp OFT Exp …… Custom Exp 

Pi0 Model OFT Model Custom Model ……

Training Pipeline

Inference Service

Experiment Layer

Model Layer

Data Layer

Discrete Model

Figure 2. The overall architecture of Dexbotic. The framework is
organized into three core layers including the data, model and ex-
periment layers, that work together to provide a complete solution
for training and serving VLA models.

policies while maintaining the stability of whole toolbox.
With the experiment scripts, users can perform the training
pipeline and the inference service using different modes.

4.2. Data Layer

Dexdata Format: We designed the Dexdata format to store
robotic datasets in a unified and efficient way. As shown in
Fig. 3 (a), it mainly includes two elements: video and jsonl.
The video directory contains video files with mp4 format
while jsonl directory includes the corresponding jsonl files.
Each jsonl file contains the data for a single robot episode.
In jsonl directory, the index_cache.json file, which users can
ignore, stores the metadata for all episodes and is automat-
ically generated for fast access. Fig. 3 (b) illustrates one
example of one line in a given jsonl file. It provides the de-
tailed information of a frame about the multi-view images,
robot state and the textual prompt. For the detail of data
process pipeline, please kindly refer to the Sec. 4.4.

4.3. Model Layer

In this section, we first introduce our pretrained VLM,
called DexboticVLM. Based on such a foundation model,
we further describe how to develop existing and custom
VLA policies. After that, we introduce some robotic pre-
trained models for finetuning both manipulation and navi-
gation tasks.



(a) Overview of Dexdata dataset� �
video

episode1.mp4 # the first episode

episode2.mp4 # the second episode

...

jsonl

index_cache.json # Global index of dataset_1

episode1.jsonl # Data for the first episode

episode2.jsonl # Data for the second episode

...� �
(b) One example of one line in json file� �

{

"images_1": {"type": "video", "url": "url1", "frame_idx": 21},

"images_2": {"type": "video", "url": "url2", "frame_idx": 21},

"images_3": {"type": "video", "url": "url3", "frame_idx": 21},

"state": [0.1, 0.2],

"prompt": "open the door",

"is_robot": true

}� �
Figure 3. The overview of Dexdata format.

4.3.1 DexboticVLM

For better generalization and the best use of existing
open-sourced state-of-the-art LLM, we pretrain VLM from
scratch. In Dexbotic, we choose to pretrain our own VLMs,
called DexboticVLM. We utilize the CLIP [24] as the vi-
sion encoder, two-layer MLP as the projector and Qwen2.5
as the LLM. Similar to the LLaVA training pipeline [20],
we first freeze the vision encoder and LLM parts and only
train the projector for cross-modal alignment. After that,
the parameters of whole network, including the vision en-
coder, projector and LLM, are updated. The training data
sets include those of LLaVA and Cambrian [28].

4.3.2 Model Development

As described in Sec. 3, existing VLA pipeline can be unified
with VLM and action expert parts. The DexboticVLM men-
tioned above can be directly used for discrete VLA training,
the same as [4, 15]. To enable DexboticVLM to directly
predict robot actions, the actions in LLM output space are
represented by mapping continuous robot actions to discrete
tokens used by the language model tokenizer. Each dimen-
sion of the robot actions is discretized separately into 256
bins. To reproduce the existing continuous representation
VLA models, we can build different action experts to pro-
duce various policies. For example, we can add the Diffu-
sion Transformer as the action expert to construct the Co-
gACT [16] model. We can further introduce the memory
module between DexboticVLM backbone and action expert
to produce MemoryVLA [26] policy. For current version,
we support multiple VLA policies like π0 [2], OpenVLA-
OFT [14] and CogACT. On the other hand, they can also
develop their customized VLA policies by designing new
action expert or introducing a supervision pipeline.

Experiment Class

Data Optimizer ModelTrainer Inference

Action Config Tokenizer Config

Experiment Layer

Sub Configuration

Feature Configure

Figure 4. The layered configuration architecture in experiment
layer. Each experiment class includes the configurations on trainer,
data, optimizer, model and inference.

4.3.3 Pretrained Models

For different demands on various robotic arm of users, we
provide two kinds of pretrained models. The first one is the
pretrained discrete model for general VLA policies and the
second one is the pretrained continuous model for specific
VLA policies. For continuous pretrained model, we further
provide two versions for single-arm and two-arm tasks. We
take CogACT as example to clearly illustrate the continuous
pretrained models.
Discrete Pretrained Model: Based on the DexboticVLM
mentioned above, we further pretrain the discrete VLA
model named Dexbotic-Base. It is further pre-trained on
single-arm data, which includes the subset of Open-X Em-
bodiment dataset [22], simulation data from multiple sim-
ulators such as RLBench [12], LIBERO [19] and Man-
iSkill2 [10], and some real robot data (e.g. UR5). The
DexboticVLM is trained to predict the N discrete tokens to
decode the discrete actions. Here, N is the degree of free-
dom (DoF). During training, continuous actions of ground-
ing truth are divided into 256 bins, which is used to super-
vise the predicted discrete tokens. The pretrained discrete
model Dexbotic-Base can be directly used to finetune any
VLM-based manipulation and navigation policies. The user
can directly employ it for both discrete and continuous ac-
tion learning. The parameters of VLM part can be loaded
from the Dexbotic-Base checkpoint. For continuous action
modeling, such as the diffusion [16] and flow matching [2]
processes, it can be performed by adding an action expert
based on the DexboticVLM. The parameters of the action
expert part can be randomly initialized.
Single-arm Continuous Model: Here, we illustrate how to
perform continuous pretraining for CogACT in Dexbotic.
Based on Dexbotic-Base, we further train the entire Co-
gACT model, including VLM and DiT head, through con-
tinuous representation pre-training. The VLM is initialized
with Dexbotic-Base and DiT head is randomly initialized.
The GT continuous action is used to supervise the predic-
tion of DiT. We use the data from multiple data resources,



including the subset of Open-X embodiment dataset and
part of our private dataset we collected. Our private dataset
includes 52 manipulation tasks collected using eight single-
arm real-world robots. These single-arm robots include
UR5, Franka, Unitree Z1, Realman GEN72, Realman 75-
6F, UMI, ARX5 and WidowX. Note that those robots have
different embodiedments with different DoF, which chal-
lenges our infrastructure capacity. The pretrained model
obtained is called Dexbotic-CogACT.
Hybrid-arm Continuous Model: The original CogACT
policy [16] does not support the multi-view and two-arm
setting. To support two-arm tasks, we modify the num-
ber of noise tokens from 7 to 16, covering both 6-DoF
and 7-DoF arms. The front-half tokens represent the ac-
tions of left arm while the second-half tokens denote the
right arm one. We perform continue training on the robotic
data of the hybrid arms based on the single-arm continu-
ous model Dexbotic-CogACT mentioned above. Despite the
single-arm data above, we further introduce Robomind [31],
AgiBot World [5] datasets, as well as the private two-arm
datasets collected from our ALOHA. For single-arm data,
the single-arm actions are used to supervise the front-half
tokens while the loss of second-half tokens is ignored dur-
ing training. To support multi-view inputs, we share the vi-
sion encoder for multi-view images and their visual tokens
are processed and concatenated as input for later LLM.

4.4. Experiment Layer

Experiment layer is the most important part in Dexbotic
toolbox. In this section, we first describe how to develop
new experiments from scratch. After that, the training
pipeline and the inference service are presented in detail.

4.4.1 Experiment Development

Based on various models developed in Model Layer, we fur-
ther develop the experiment scripts for model training and
inference. As shown in Fig. 4, we adopt a layered con-
figuration architecture. For each experiment class, it con-
tains the feature configurations on trainer, data, optimizer,
model and inference. The data and model configurations
further include the action and tokenizer configurations, re-
spectively. We first construct a base_exp script in dexbotic,
which serves as the basis configuration of VLA policies.
This script mainly contains the configuration on optimizer,
trainer, action, data, model and inference.

To develop the experiment script for existing VLA poli-
cies, we inherit the base_exp script and modify the cor-
responding configuration for the target policy (e.g., Co-
gACT_Exp). To run new experiments on existing policies,
users can simply modify these configuration settings. As
long as users inherit the corresponding configuration and
override the fields, users can effortlessly fork a new set of
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Figure 5. The training pipeline of Dexbotic.
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Figure 6. The inference service of Dexbotic.

hyperparameters without the need to copy the entire file.
To develop the custom policies, users need to inherit and
modify the configuration and model classes. Once the ex-
periment script is correctly created, the users can directly
run the experiment script to perform model training or in-
ference like: python xxx_exp.py -task train. Here, the task
denotes train or inference.

4.4.2 Training Pipeline

As shown in Fig. 5, the data inputs of Dexbotic include the
observation, textual instruction and robot states. The tex-
tual prompt is tokenized and input to the text encoder to
generate the text tokens. The observation image is firstly
processed by the vision encoder to generate the image to-
kens and aligned to the text space by a light-weight MLP-
based projector. The image and text tokens are concatenated
together and further input to the LLM to generate discrete
tokens. For discrete-representation policy, these tokens can
be directly decoded into sparse actions while for the contin-



Table 1. Performance comparison on SimplerEnv-Bridge with WidowX robot between the state-of-the-art policies and dexbotic version.

Methods Spoon on Towel Carrot on Plate Stack Cube Eggplant in Basket Avg. Suc

CogACT 71.7 50.8 15.0 67.5 51.3
DB-CogACT 87.5 65.3 29.2 95.8 69.5 (+18.2)

OFT 12.5 4.2 4.2 100.0 30.2
DB-OFT 91.7 76.4 43.1 94.4 76.4 (+46.2)

MemVLA 75.0 75.0 37.5 100.0 71.9
DB-MemVLA 100.0 66.7 70.8 100.0 84.4 (+12.5)

Table 2. Performance comparison on four tasks in RoboTwin2.0 between the state-of-the-art policies and their dexbotic version.

Methods Adjust Bottle Grab Roller Place Empty Cup Place Phone Stand Avg. Suc

CogACT 87 72 11 5 43.75
DB-CogACT 99 89 28 18 58.5 (+14.75)

Table 3. Performance comparison on LIBERO between the state-
of-the-art policies and their dexbotic version.

Methods Spatial Object Goal Long Avg. Suc

CogACT 97.2 98.0 90.2 88.8 93.6
DB-CogACT 93.8 97.8 96.2 91.8 94.9 (+1.3)

MemVLA 98.4 98.4 96.4 93.4 96.7
DB-MemVLA 97.2 99.2 98.4 93.2 97.0 (+0.3)

uous representation, an action expert is usually appended to
produce continuous-value action chunking. The generated
action sequence is supervised by the ground-truth of actions
using the corresponding action losses.

4.4.3 Inference Service

Dexbotic also provides the inference service for different
developers. As shown in Fig. 6, DexClient sends a re-
quest to the Web API over the network. Web API based
on the Flask Service, receives and process the request from
DexClient. After receiving data from the DexClient, the
system performs the data process on image and text, mak-
ing the data suitable for next VLA model inference. The
VLA model takes the image and text prompt as input and
produces the continuous actions. The generated action se-
quences are then sent back to the Web API and Client se-
quentially. The DexClient performs corresponding actions
based on these resulting actions.

5. Benchmarks
To validate the effectiveness of pretrained models we

provided, we conduct the experiments and perform per-
formance comparison on multiple simulation benchmarks:
LIBERO [19], SimplerEnv [17], CALVIN [21], Man-

iSkill2 [10], Robotwin2.0 [8]. We first simply describe
these simulation benchmarks and then show detailed bench-
marking results on them.

5.1. Simulation Benchmarks

SimplerEnv aims to narrow the gap between simulation
and the real world environment. It provides two embod-
iedments, Google robot and WidowX robot, and two task
suites, Visual Matching and Variant Aggregations, for fair
evaluation. In this paper, we focus mainly on the Wid-
owX robot with only Visual Matching suite. It includes four
tasks: Put Spoon on Towel, Put Carrot on Plate, Stack Cube
and Put Eggplant in Yellow Basket.
CALVIN targets long-horizon language-conditioned robot
manipulation tasks. We perform experiments under the
standard ABC-D setting. The model is trained on environ-
ments A, B, and C, and evaluated on generalization capa-
bility on environment D. We report the average success rate
over 1000 rollouts per task, along with the average number
of tasks completed consecutively to accomplish five instruc-
tions.
ManiSkill2 mainly focuses on the basic pick-and-place.
We evaluated the experimental results on five representa-
tive tasks: PickCube, StackCube, PickSingleYCB, PickS-
ingleEGAD, and PickClutterYCB. Those tasks require the
robot to grasp the specific object and place it in a 3D posi-
tion indicated by a green marker, evaluating 3D perception
and spatial reasoning.
RoboTwin2.0 is a newly-introduced simulation benchmark.
It improves sim-to-real transformation and contains 50
dual-arm tasks and five robot embodiments. In this paper,
we conduct the comparison based on four carefully selected
tasks: adjust bottle, grab roller, place empty cup, and place
phone stand.
LIBERO includes five task suites, and each suite is de-



Table 4. Performance comparison on CALVIN between the state-of-the-art policies and their dexbotic version. We perform experiments
on the ABC→D split, where VLA models are trained with data from A, B, and C environments and evaluated in environment D that is
unseen during training.

Methods 1 2 3 4 5 Avg. Len

CogACT 0.838 0.729 0.640 0.559 0.480 3.25
DB-CogACT 0.935 0.867 0.803 0.760 0.698 4.06(+0.81)

OFT 0.891 0.794 0.674 0.598 0.515 3.47
DB-OFT 0.928 0.807 0.692 0.602 0.511 3.54(+0.07)

Table 5. Performance comparison on five tasks in ManiSkill2 between the state-of-the-art policies and their dexbotic version.

Methods PickCube StackCube PickSingleYCB PickSingleEGAD PickClutterYCB Avg. Suc

CogACT 55 70 30 25 20 40
DB-CogACT 90 65 65 40 30 58 (+18.0)

OFT 40 45 5 5 0 21
DB-OFT 90 75 55 65 30 63 (+42.0)

signed to evaluate specific capabilities. LIBERO-Spatial
mainly focuses on different positions to place the objects.
LIBERO-Object involves pick and place various objects into
the box within a fixed scene layout. LIBERO-Goal evalu-
ates the ability to perform various operations in a fixed lay-
out. LIBERO-Long, also called LIBERO-10, which targets
10 long-horizon tasks that involve various scenes and oper-
ations. LIBERO-90 is an expanded version of LIBERO-10,
presenting a more challenging benchmark.

5.2. Benchmark Results

SimplerEnv: As shown in Tab. 1, on the challenging
SimplerEnv benchmarks, DB-CogACT with the pretrained
model outperforms the official CogACT by absolute 18.2%.
DB-OFT achieves absolute 46.2% improvements compared
to the official OpenVLA-OFT. Moreover, we further eval-
uate the effectiveness of pretrained models on the Memo-
ryVLA, a state-of-the-art VLA on SimplerEnv. The experi-
mental result shows DB-MemoryVLA achieves 84.4% suc-
cess rate, achieving more than absolute 12% improvements.
The great improvements indicate the strong representation
power of our pretrained models.
CALVIN: To evaluate the improvements on long-horizon
tasks, we conduct the performance comparison between
VLA policies and their dexbotic countparts (see Tab. 4).
DB-CogACT outperforms the official CogACT on all met-
rics. It achieves 4.06 average length, surpassing the Co-
gACT by 0.81. Moreover, DB-OFT also achieves better
performance than the standard OpenVLA-OFT.
RoboTwin 2.0: Here we mainly take the CogACT as an
example to show the effectiveness of dexbotic under the
easy mode. As shown in Tab. 2, for four selected tasks:
adjust the bottle, grab roller, place empty cup and place
the phone stand, CogACT achieves an average success rate

of 43.75%. In comparison, DB-CogACT surpasses Co-
gACT by 14.75% absolute gains with 58.5% success rate. It
demonstrates that our pretrained model can bring large per-
formance improvements under the dual-arm embodiment.
LIBERO: On LIBERO benchmark, the performance of
state-of-the-art VLA policies is nearly saturated (see
Tab. 3). With our Dexbotic pre-trained models, those poli-
cies can obtain some further performance improvements
for them like CogACT and MemoryVLA. Specifically, DB-
CogACT boosts the average success rate on four task suites
by 1.3% points, compared to the CogACT baseline.
ManiSkill2: As shown in Tab. 5, the original OpenVLA-
OFT produces undesirable performance with 21% average
success rate among five tasks. In comparison, DB-OFT
improves the absolute performance by 42% points, which
demonstrates the effectiveness of our pretrained model.
Moreover, DB-CogACT further improves the average suc-
cess rate by 18% points compared to the strong baseline of
original CogACT.

6. Real-world Performance

To showcase what tasks users can accomplish in real
world using the Dexbotic toolbox, we release the task
gallery for visualization (see Fig. 8). On different robots
like UR5e, ALOHA, ARX5 and Franka, we collect the real-
world task data through the teleoperation. For each task,
we collect 500-1000 demonstrations depending on the task
difficulty and convert those data into our Dexdata format.
These converted data is used to finetune the corresponding
models based on our pretrained model.

The real world experiments show that Dexbotic can ac-
complish various daily tasks. Notably, it achieves 100% and
80% success rates for the set the plates and search the green



(a) Push the buttons (b) Arrange fruits in basket

Figure 7. Comparison of real-world and simulated renderings, highlighting the high consistency in the robotic arm and objects performing
the same action in both environments.

box tasks, respectively. However, for those fine-grained
manipulation tasks like Shred the scrap paper and Pour
fries into plate, they indeed pose challenges for existing
VLA policies. Moreover, we verify that some state-of-the-
art VLA policy like MemoryVLA [26] can solve the long-
horizon and memory-requiring tasks, like Push buttons se-
quentially. Please see the official website of Dexbotic for
more visualization on real-world tasks, and we would like
to encourage the users to utilize the Dexbotic toolbox to de-
velop more real-world robotic tasks. We would also suggest
users submit more policies developed based on Dexbotic to
RoboChallenge for fair comparison in real-world.

7. Real2Sim Evaluation

Real-world evaluations are often labor-intensive. To ad-
dress this challenge, we propose Dexbotic Open Source-
Twins (DOS-Twins), a Real2Sim2Real [18, 23] simula-
tor developed as part of the Dexbotic ecosystem. For the
publicly released real-world datasets, we reconstruct cor-
responding simulation environments that closely replicate
the real setups. Users can leverage these datasets for model
training and subsequently submit their trained models to our
Real2Sim evaluation interface for comprehensive capability
assessment. DOS-Twins ensures consistency between sim-
ulation and real-world across three key dimensions:
Visual Consistency. The VLA model is highly sensitive
to visual alignment. This misalignment leads to discrepan-
cies in success rates, with high success in simulation but
significantly lower success in real-world tasks. Leveraging
3D Gaussian Splatting (3DGS) [13], we generate photore-
alistic renderings with precise alignment between rendered
objects and their corresponding meshes. Accurate camera
calibration guarantees that the simulated camera viewpoints
perfectly match those of real-world cameras.
Motion Consistency. Motion consistency is crucial for en-
suring that the simulated and real-world control systems are
aligned. Proper alignment prevents incorrect visual feed-
back and ensures that the model can reliably execute the
intended actions, as predicted by the simulation, in real-
world tasks. Without consistency in motion, the robotic arm

may not perform as expected, leading to discrepancies be-
tween simulated success and real-world failure. The low-
level controller of the robotic arm is calibrated to match the
motion dynamics and kinematic characteristics of the real
hardware.
Interaction Consistency. In grasping tasks, ensuring accu-
rate interaction between the gripper and the object is crit-
ical, as the geometric and physical alignment directly im-
pacts the model’s ability to perform tasks successfully. To
achieve this, we perform high-precision 3D scanning of
both the gripper and objects, ensuring that the geometric
structure errors remain within a millimeter for the objects.
This high level of precision minimizes interaction errors,
maintaining millimeter-level accuracy during grasping. Ad-
ditionally, we align the parallel structure of the gripper with
that of the real hardware, ensuring consistent physical in-
teractions between the gripper and objects. This consis-
tency enables reliable performance in both simulated and
real-world environments.

Specifically, DOS-Twins employs Isaac Sim as the back-
end physics engine and 3DGS as the rendering frontend,
achieving high-precision reconstruction and visualization of
robotic arms and their components. It supports multiple
robotic arm and gripper configurations and allows rendering
from any viewpoint depending on task requirements. All
simulation assets are organized modularly, enabling users
to reuse and customize them for specific tasks. More-
over, users can follow our simulation construction workflow
and utilize the provided developer tools to build new en-
vironments. These environments can automatically moni-
tor model performance across various robotic platforms and
task settings during pre-training.

As illustrated in Fig. 7, we compare the simulated envi-
ronment with the real setup through replay analysis. The re-
sults show that the manipulation behavior in our simulations
closely aligns with real-world phenomena, demonstrating
that users can train policies in the real world while con-
ducting consistent evaluations within our simulation frame-
work. Please access the official website for more visualiza-
tion comparison on the visual, motion and interaction con-
sistency.

https://dexbotic.com
https://robochallenge.ai/
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(a) Wear the hat (Franka)        Success rate: 70% 

(b) Set the plates (UR5e)          Success rate: 100% 

(c) Search green box (ARX5)        Success rate: 80%   

(d) Stack the bowls (ALOHA)      Success rate: 90% 

(g) Shred scrap paper (UR5e)      Success rate: 40%

(f) Pour fries into plate (ALOHA)  Success rate: 20% 

(e) Push the buttons (Franka)        Success rate: 60% 

Figure 8. The video gallery produced by Dexbotic toolbox.
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